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Clustering and Percolation
The study of clustering behavior of particles in condensed-phase systems is of importance in a  
wide variety of phenomena:

nucleation
condensation of gases  

gelation and polymerization  

chemical association  

structure of liquids

metal-insulator transition in liquid metals  

conduction in dispersions

aggregation of colloids  

flow in porous media  

spread of diseases  

wireless communication
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Cluster ≡ a connected group of elements (e.g., sites or bonds in lattice or particles).

Roughly speaking, as finite-sized clusters grow, the percolation threshold of the system, is the  
density at which a cluster first spans the system (long-range connectivity). In the thermodynamic  
limit, the percolation threshold is the point at which a cluster becomes infinite in size.

Percolation theory provides a powerful means of understanding such clustering phenomena.
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Overlapping Hyperspheres and Oriented Hypercubes
Prototypical continuum (off-lattice) percolation model: Equal-sized  
overlapping (Poisson distributed) hyperparticles in Rd.

S. Torquato, “Effect of dimensionality on the continuum percolation of overlapping
hyperspheres and hypercubes,” Journal of Chemical Physics, 136, 054106 (2012).
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Basic Definitions
Consider equal-sized overlapping hyperspheres of diameter D in Rd at number density ρ and  
define the reduced density η by

η = ρv1(D/2), (1)

where v1(R) is the d-dimensional volume of a sphere of radius R given by

v1(R) =
πd / 2 Rd

Γ(1 + d/2)
. (2)

For hypercubes of edge length D,  v1 (D/2) =  Dd .   
Fraction of space covered by the overlapping particles is

φ = 1 − exp(−η). (3)

Two spheres of radius D/2 are considered to be connected if they overlap. Define the indicator  
function for the exclusion region as

f (r) =
(

0, r  > D,
1, r  ≤ D

(4)

The volume of the exclusion region v1(D) is given by the volume integral of f (r) , i.e.,

(5)v1(D) =
Z

f (r)dr = 2dv1(D/2).
Rd

Mean number of overlaps per sphere N is given by

N = ρv1(D) = 2dη.
. – p. 4/3
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3D Hard Spheres in Equilibrium
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Still Many Theoretical Conundrums
Do not know radius of convergence of virial expansion for p.  

No rigorous proof there is a first-order phase transition.

No rigorous proof that FCC is the maximal density state.  

Are densest packings in high d disordered?
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Definitions and Background
The pair-connectedness function P (r)  is defined such that ρ2P (r)  dr1  dr2  is the probability  
finding any pair of particles of the same cluster in the volume elements dr1  and dr2  centered on  
r 1 and r2 , respectively, where r = r 2 − r1 .

Mean cluster number S is the average number of particles in the cluster containing a randomly  
chosen particle:

S =  1 + ρ
Z

P(r) dr.
Rd

(7)

−
Since P (r) becomes long-ranged at the percolation threshold ηc, it follows from (7) that S
diverges to infinity as η → ηc  .

η

S

ηc
0

η
0

S-1

ηc

It is believed that
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− γ −S ∝  (ηc − η) , η → ηc (8)

where γ is a universal exponent for a large class of lattice and continuum percolation models in  
dimension d. For example, γ = 43/18 for d = 2 and γ = 1.8 for d = 3. For d ≥ 6, γ takes its  
dimension-independent mean-field value: γ = 1.



Results
Show analytically that the [0, 1], [1, 1] and [2, 1] Padé approximants of low-density expansion of
S are upper bounds on S for all d.

1

These results lead to lower bounds on ηc, which become progressively tighter as d increases and  
exact asymptotically as d → ∞ , i.e.,

ηc  → 2d

Analysis is aided by a remarkable duality between the equilibrium hard-hypersphere (hypercube)  
fluid system and the continuum percolation model of overlapping hyperspheres (hypercubes).

topology   ⇔ geometry

Show as d increases, finite-sized clusters become more ramified (branch-like).

Analysis sheds light on the radius of convergence of density expansion for S and leads to an  
analytical approximation for ηc that applies across all d.

Low-dimensional results encode high-dimensional information.

Analytical estimates are used to assess previous simulation results for ηc up to twenty  
dimensions.

Describe the extension of our results to the case of overlapping particles of general anisotropic  
shape in d dimensions with arbitrary orientations.
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Ornstein-Zernike Formalism
Coniglio et al. (1977) derived the density expansion of P(r) in terms of f : collection of diagrams having
at least one unbroken path of f -bonds connecting root points 1 and 2, which can be divided into direct  
diagrams denoted by C(r) ,  direct connectedness function, and indirect diagrams:

P(r) = C(r) + ρC(r) ⊗ P(r),

where ⊗ denotes a convolution integral. Taking the Fourier transform of (8) gives

P˜(k) = C̃(k)
1 − ρC˜(k)

. – p. 8/3

.

Therefore,

or S− 1 = 1 − ρC˜(0),S = 1 + ρP˜(0)

which gives the critical percolation density to be

ηc =  v1(D/2)[C˜(0)]−1 = v1 (D/2)
" Z #− 1

C(r )dr . (9)

The density expansions of the mean cluster number and its inverse are respectively

S =  1 +  
X

Sm + 1 η m

m = 1

(10)

S− 1 = 1 − ρ
Z

Rd
(11)

where

C(r)dr = 1 −
X

Cm + 1 η m .
m = 1

m

Sm =
X

Cj S m + 1 − j ,
j = 2

(12)



Overlapping Hyperspheres and Oriented Hypercubes
C(r) =

X
ρn − 2cn (r) .

n = 2

(13)

The first three terms of this series expansion have the following diagrammatic representations:

c2 (r ) = . (14)

ρc3 (r ) = . (15)

ρ2 c4 (r ) = (16)
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Dimer, Trimer and Tetramer Statistics
Dimer and trimer contributions, are respectively given by

C2 = 1 Z

Rd
f (r)dr = 2B 2

v1 (D / 2)
= 2d ,

C3 = − v2
1 (D/2)

v1 (D / 2)
1 Z

Rd
f ( r )vi n t

2 (r; D)dr = − 3 · B3

v1(D/2)2
,

where vi n t
2 (r; D ) = f (r) ⊗ f (r)

is the intersection volume of two exclusion regions whose centroids are separated by the  
displacement vector r ,  which is known analytically for any d.

The virial coefficient B m  is defined via the equation for the pressure p of a hard-particle system  
at number density ρ and temperature T , i.e.,

p
ρkB T

= 1 +
X

B m + 1 ρ m .
m = 1

The tetramer contribution to the series expansion for C(r):

3 7A B C

. – p.10/3

C4 = − 2C4 + 2C4 − C4 ,

B4  for corresponding hard-particle system is also obtained from the sum of the diagrams
corresponding to CA , C B and CC but with weights −3/8, 3/4 and −1/8.
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Trimer Statistics

2|C3 | /C2  is the probability that the pair of particles 2 and 3 are connected to one another given
that particles 2 and 3 are each connected to particle 1.

This conditional probability can be evaluated exactly as a function of dimension for both  
overlapping hyperspheres and overlapping oriented hypercubes. Can show that this probability  

vanishes as d becomes large, implying not only that trimers become more ramified or
“branch-like” but all larger n-mers (e.g., tetramers, etc.) when n ≪ d.

For overlapping hyperspheres,

C3 = −
d− 1 i n t

23 · 2 v (D; D )
v1 (D / 2)

. (17)

For large d, the leading-order asymptotic result is given by

|C3 |
C2

2
∼

„ 27 « 1 / 2 „ 3« d / 2

2πd 4
. (18)

For overlapping oriented hypercubes,

C2
2 4

. – p. 11/3

|C3| =
„ 3« d

(19)



Table 1: Trimer Statistics for Overlapping Hyperspheres and Oriented Hypercubes
d 2

´
sp h er e

`` |C3 | /C2 |C3 | /C22
´

cu be

1 3
4 = 0.7500000000 . . . 3

4 = 0.7500000000 . . .

2
√

1 − 3 3 = 0.5865033288 . . . 4
“ 3” 2

3

4π
15
32 = 0.4687500000 . . .

“ 3”
4

3

4
√

1 − 9 3 = 0.3797549926 . . . 4
“ 3” 4

5

9π
159
512 = 0.3105468750 . . .

“ 3”
4

5

6
√

1 − 27 3
20π = 0.2557059910 . . .

“ 3”
4

6

7 867
4096 = 0.2116699219 . . .

“ 3”
4

7

8
√

1 − 837 3
560π = 0.1759602045 . . .

“ 3”
4

8

= 0.5625000000 . . .

= 0.4218750000 . . .

= 0.3164062500 . . .

= 0.2373046875 . . .

= 0.1779785156 . . .

= 0.1334838867 . . .

= 0.1001129150 . . .

9 19239
131072 = 0.1467819214 . . .

“ 3”
4

9

10
√

1 − 891 3
560π = 0.1227963465 . . .

“ 3”
4

1 0

11 107985
1048576 = 0.1029825211 . . .

“ 3”
4
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= 0.07508468628 . . .

= 0.05631351471 . . .

= 0.04223513603 . . .



Table 2: Tetramer Statistics for Overlapping Hyperspheres and Oriented Hypercubes
2

´
s phe r e 2  

´
ube

c

24
288
3456

41472
497664
971968

71663616
859963392
0319560704
23834728448

d

1

2

3

4

`C 4 /C 3 `C4 /C3

0.5416666667 13  = 0.5416666667
0.311070376 79 = 0.2743055556
0.1823550119 433 = 0.1252893519
0.1070948900 1927 = 0.04646508488

5 0.06210757652 3793    = 0.007621608153

6 0.0349893970 56201− 5 = −0.009410800594
7 0.01866770530 1086− 527 = −0.01516148725
8 0.008950017 13337273− = −0.01550911716
9 0.003289929140 14033− 1

3327 = −0.01359876947
10 0.000117541 1364831081− 1 = −0.01102139196
11 −0.001543006376 12654110687− 1048576 = −0.006371786923
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Exact High-d Asymptotics for Percolation Behavior

Clearly, threshold ηc for either overlapping hyperspheres or hypercubes must tend to zero as d
tends to infinity.

Show that in sufficiently high dimensions, the threshold ηc has the following exact asymptotic  
expansion:

ηc = − −C3 C41
2d 23d 24d + O 3

25d

„ C2  «
, d ≫ 1. (20)

Thus, the corresponding asymptotic expansion for mean number of overlaps per particle is given  
by

Nc  =  1 − 22d
C3 C4

− 23d + O 3

24d

„ C2  «
, d ≫ 1. (21)

Hence, in the infinite-dimensional limit, we exactly have

1
ηc  ∼ 2d , d → ∞

. – p. 14/3

(22)

and

Nc  ∼ 1, d → ∞ , (23)



Duality Relation
First, recall the Ornstein-Zernike (OZ) relation for a general one-component many-particle (not  
necessarily hard-particle) equilibrium system at number density ρ:

h(r ) = c(r) + ρc(r) ⊗ h(r) [P(r) = C(r) + ρC(r) ⊗ P(r)]
where h(r) = g2(r) − 1 is total pair correlation function and c(r) is direct correlation function.  

The “compressibility relation” for general equilibrium systems in at number density ρ:

ρkBT κT = 1 + ρ
Z

Rd
h(r )dr S = 1 + ρ

Rd

» Z –
P(r )dr ,

where kB  is Boltzmann’s constant and κT ≡ ρ ∂ p
1

“
∂ ρ

”

T
is the isothermal compressibility.

Pair connectedness function P (r) for overlapping hyperspheres is exactly related to the total  
correlation function h(r) for equilibrium hard-hypersphere fluid in high dimensionsvia

P(r; ρ) = −h(r ; −ρ)

This duality relation is exact for d =  1 and a good approximation for any finite d and η ≤ ηc.  

This mapping is exact in the Percus-Yevick approximation for OZ equation.
. – p. 15/3



Decorrelation With Increasing Dimension

Decorrelation Principle:

1. Unconstrained pair correlations in disordered many-particle 
systems that may be present in low dimensions vanish  
asymptotically in high dimensions;

2. and gn for any n ≥  3 can be inferred entirely (up to some  
small error) from a knowledge of the number density ρ and  
the pair correlation function g2(r).

. – p.16/3



Decorrelation With Increasing Dimension

Decorrelation Principle:

1. Unconstrained pair correlations in disordered many-particle 
systems that may be present in low dimensions vanish  
asymptotically in high dimensions;

2. and gn for any n ≥  3 can be inferred entirely (up to some  
small error) from a knowledge of the number density ρ and  
the pair correlation function g2(r).

Therefore, the freezing-point g2(r) as d → ∞ tends to the step  
function. Can show associated packing fraction φ = 1/2d.
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Padé Approximants and Lower Bounds on ηc

Was empirically observed that [0, 1], [1, 1] and [2, 1] Padé approximants of S provided lower  
bounds on ηc for d =  2 and d = 3 (Quintanilla & Torquato, 1996).

Can prove [0, 1] approximant is a lower bound on ηc and that [1, 1] and [2, 1] approximants are  
lower bounds ηc for sufficiently small η in any d and for sufficiently large d for η < η0.

Easy to show that all [n, 1] Padé approximants are lower bounds on ηc for d =  1.  

Consider [0, 1] approximant. Given and Stell (1990) derived the upper bound on P (r):

P(r) ≤ f (r) + ρ[1 − f (r)] [ f (r) ⊗ P(r)].

Note that since [1 − f (r)] ≤ 1, we also have the weaker upper bound

P(r) ≤ f (r) + ρf (r) ⊗ P(r). (24)

Taking the volume integral of (24) and using the definition (7) for the mean cluster number S
yields the following upper bound on the latter:

1
S ≤ 1 2

.
−  Sη

− 1Now since this has a pole at η = S2 , implies the following new lower bounds on ηc and Nc :

2

1 1
ηc ≥ S =  2d , dNc  ≡  2  ηc ≥ 1.

These bounds apply to any system of overlapping identical oriented d-dimensional convex  
particles that possess central symmetry.
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Padé Approximants and Lower Bounds on ηc
[1, 1] Padé approximant of S is given by

S ≤  S[1,1] =
1 + 2d − S3

2d

» –
η

S31 −  2dη

( 1 ), for 0 ≤ η ≤ η0 , (25)

provides the following lower bound on ηc for all d:

( 1 ) 1

2d
22d

ηc ≥ η0 = » C3 
– .

1+
(26)

[2, 1] Padé approximant of S is given by

S ≤  S[1,1] = S3

» – »
1 + 2d − S4 η + S3 −

d2 S4

S3

–
η2

S4

3
1 − S η

, for 0 ≤  η ≤ η( 2 )
0 , (27)

provides the following lower bound on ηc for all d:

( 2 )ηc ≥ η0 =
1+ C3

22d

2d
» 2C3 C4
1 + +22d 23d

. – p. 18/3

.– (28)

This becomes asymptotically exact in high d, and provides a very good estimate of ηc, even in  
low dimensions!



Table 3: Results for Overlapping Hyperspheres. Simulation data due to Krü ger (2003)
d ηP U

c ηc c c cηL  from [2, 1] ηL  from [1, 1] ηL  from [0,1
2 1.1282 0.7487424583 . . . 0.604599 . . . 0.250000 ..
3 0.500000 . . . 0.3418 0.2712064151 . . . 0.235294 . . . 0.125000 ..

4 0.138093 . . . 0.1300 0.1115276079 . . . 0.100766 . . . 0.0625000 ..
5 0.0546701 . . . 0.0543 0.04885427359 . . . 0.0453257 . . . 0.0312500 ..
6 0.0236116 . . . 0.02346 0.02221179439 . . . 0.0209930 . . . 0.0156250 ..
7 0.0106853 . . . 0.0105 0.01034527214 . . . 0.00991018 . . . 0.00781250 .
8 0.00497795 . . . 0.00481 0.004899178686 . . . 0.00474036 . . . 0.00390625 .
9 0.00236383 . . . 0.00227 0.002348006636 . . . 0.00228912 . . . 0.00195312 .

10 0.00113725 . . . 0.00106 0.001135342587 . . . 0.00111326 . . . 0.000976562 .
11 0.000552172 . . . 0.000505 0.0005526829831 . . . 0.000544338 . . . 0.000488281 .

Simulation data begins to violate best lower bound at d = 8
Wagner, Balberg & Klein (2006) incorrectly found that Nc = 2dηc is a nonmonotonic function of
d and incorrectly concluded that hyperspheres have lower thresholds than hypercubes in higher
dimensions (d ≥ 8).

These numerical threshold estimates were refined in a follow-up article: Torquato & Jiao, J. Chem.  
Phys. (2012).
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Overlapping Hyperspheres and Oriented Hypercubes

0 0.1 0.2 0.3 0.4 0.5
η

0

0.2

0.4

0.6

0.8

1
S-1

Hyperspheres
d=3

PY
[1,1]

0 0.005 0.01 0.025 0.030.015 0.02
η

0

0.2

0.4

0.6

0.8

1

S-1

Hyperspheres  
d=6

PY
[1,1]

0 0.0004 0.0005 0.00060.0001  0.0002 0.0003
η

0

0.6

0.4

0.2

0.8

1

S-1

Hyperspheres  
d=11

Qualitatively simialr results were obtained for hypercubes.
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Extension to d-dimensional Hyperparticles of General Convex Shap

For overlapping hyperparticles of general anisotropic shape of volume v1 with  
specified orientational PDF p(ω) in d dimensions, the simplest lower bounds  
on ηc  and Nc generalize as follows:

v1

vex
ηc ≥ , (29)

N c ≡ ηc
vex
v1

≥ 1,

where vex =
r

Rd
f (r, ω)p(ω)drdω.

Exclusion volumes are known for some convex nonspherical shapes that are
randomly oriented in two and three dimensions (Onsager 1948; Kihara 1953;
Boublik 1975).

Evaluated lower bound for a variety of randomly oriented nonspherical  
particles in two and three dimensions.

Showed that the lower bound is relatively tight and improves in accuracy in  
any fixed d as the particle shape becomes more anisotropic.
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Effect of Dimensionality on ηc  for Nonspherical Hyperparticles
Torquato and Jiao, Phys. Rev. E, 2013

Exclusion-Volume Formula in Rd

Have derived a general formula for vex for randomly oriented convex  
hyperparticle in any d:

vex =  2v1 +
2(2d−1 − 1)

d
s1R̄,

where s1 is the d-dimensional surface area of the particle and R is its radius  
of mean curvature. Recovers well-known special cases for d =  2 and d = 3.
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Effect of Dimensionality on ηc  for Nonspherical Hyperparticles
Torquato and Jiao, Phys. Rev. E, 2013

Exclusion-Volume Formula in Rd

Have derived a general formula for vex for randomly oriented convex  
hyperparticle in any d:

vex =  2v1 +
2(2d−1 − 1)

d
s1R̄,

where s1 is the d-dimensional surface area of the particle and R is its radius  
of mean curvature. Recovers well-known special cases for d =  2 and d = 3.

An Isoperimetric Inequality
Theorem: Among all convex hyperparticles of nonzero volume, the hypersphere  
possesses the smallest scaled exclusion volume vex/v1 = 2d.

This theorem together with exclusion-volume formula leads to the following  
inequality involving s1, R̄ and v1:

. – p.22/3

(30)s1R̄   ≥ dv1,
where the equality holds for hyperspheres only. This is a special type of  
isoperimetric inequality.



Radius of Mean Curvature (Mean Width)
Consider any convex body K  in d-dimensional Euclidean space Rd to
be trapped entirely between two impenetrable parallel
(d − 1)-dimensional hyperplanes that are orthogonal to a unit vector n  
in Rd. The “width” of a body w(n) in the direction n is the distance  
between the closest pair of such parallel hyperplanes.

The mean width w̄ is the average of the width w(n) such that n is  
uniformly distributed over the unit sphere Sd−1 ∈ Rd.

The radius of mean curvature R̄of a convex body is trivially related to  
its mean width w̄ via

R̄                                                                                                                            =w̄ 2
. – p. 23/3

(31)



Steiner Formula

The famous Steiner formula expresses the volume vǫ of the parallel body in  
Rd at distance ǫ as a polynomial in ǫ and in terms of geometrical  
characteristics of the convex body K , i.e.,

vǫ =  
'

Wkǫk,
k = 0

(32)

where Wk are trivially related to the quermassintegrals or Minkowski  

functionals. Of particular interest is the lineal characteristic, i.e., the (d − 1)th  
coefficient:

(33)Wd−1 = Ω(d)R ,̄

where R̄ is the radius of mean curvature and

Ω(d) =
dπd/ 2

Γ(1 + d/2)

. – p. 24/3

(34)

is the total solid angle contained in d-dimensional sphere.



Steiner Formula

Figure 1: Parallel body for a rectangle.

For a 3-cube of side length a, the volume of the parallel body

3vǫ = v1 + s1ǫ + 3aπǫ2 + 4πǫ3

and hence radius of mean curvature is

4 . – p. 25/3

R̄ = 3 a



Analytical Expressions for Exclusion Volumes in Rd

We have analytically derived formulas for the exclusion volumes for a  
variety of nonspherical convex bodies in 2, 3 and arbitrary dimensions  

d.

Platonic solids, spherocylinders, and parallelpipeds in R3

d-cube (hypercube)
r. ectangular parallelpiped (hyperrectangular parallelpiped)
s. pherocylinder (hyperspherocylinder)
regular d-crosspolytope (hyperoctahedron or orthoplex)  

A regular d-simplex (hypertetrahedron)

Note that the hypercube, hyperoctahedron and hypertetrahedron are  
the only regular polytopes for d ≥ 5.
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Exclusion Volume for Platonic Solids

Table 4: The numerical values of the dimensionless exclusion volumes vex/v1 of 3D regular
polyhedra and sphere.

K vex/ v1

Tetrahedron 3   
4π 3c o s − 1 ( − 1 ) = 15.40743 . . .

Cube 11

Octahedron 3   
2π 3c o s − 1 ( 1 ) = 10.63797 . . .

Dodecahedron 8π √ 5
3 0  c o s − 1 (  1  )  = 9.12101 . . .

Icosahedron 8π 3
3 0 c o s − 1 (

√
5 ) = 8.91526 . . .

Sphere 8
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Exclusion Volume for Regular Polytopes in Rd

3 4 5 6 8 9 10 117
d

100

10000
V

ex
/V

1

HC
HO  
HT

Figure 2: The dimensionless exclusion volume vex/v1 versus dimension d for the three convex  
regular polytopes: hypercube, hyperoctahedron and hypertetrahedron.
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Conjecture for Maximum-Threshold Convex Body

Recall that the dimensionless exclusion volume vex/v1, among all convex bodies in Rd with a  
nonzero d-dimensional volume, is minimized for hyperspheres. Also, threshold ηc of a
d-dimensional hypersphere exactly tends to v1/vex =  2− d  in the high-dimensionallimit.

These properties together with the principle that low-d percolation properties encode high-d  
information, leads us to the following conjecture:
Conjecture: The percolation threshold ηc among all systems of overlapping randomly oriented convex  
hyperparticles in Rd having nonzero volume is maximized by that for hyperspheres, i.e.,

(ηc)S ≥ ηc, (35)

where (ηc)S is the threshold of overlapping hyperspheres.

Similar reasoning also suggests that the dimensionless exclusion volume vex/veff associated  
with a convex (d − 1)-dimensional hyperplate in Rd is minimized by the (d − 1)-dimensional
hypersphere, which consequently would have the highest percolation threshold among all convex  
hyperplates.
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Accurate Scaling Relation for ηc  for Nonspherical Convex Hyperpartic
Guided by the high-dimensional behavior of ηc, the aforementioned conjecture for hyperspheres  
and the functional form of the lower bound ηc ≥  v1/vex, we propose the following scaling  
relation for the threshold ηc of overlapping nonspherical convex hyperparticles of arbitrary shape  
and orientational distribution that possess nonzero volumes for any dimension d:

ηc ≈
v1

„ vex
«

S vex

„  v1
«

(ηc )S

vex c S= 2d
„ v1

«
(η ) , (36)

where (ηc)S is the threshold for a hypersphere system.

The scaling relation (36) is also an upper bound on ηc, i.e.,

cη ≥ 2d
„ v1

vex

«
(ηc )S . (37)

For a zero-volume convex (d − 1)-dimensional hyperplate in Rd, reference system is
(d − 1)-dimensional hypersphere of characteristic radius r  with effective volume veff , yielding  
the scaling relation

ηc ≈ 2d
„ veff

vex

. – p. 30/3

«
(ηc )S H P , (38)

where (ηc )S H P is the threshold for a (d − 1)-dimensional hypersphere.



. – p.31/3

Scaling Relation: Three Dimensions

Table 5: Percolation threshold ηc of certain overlapping convex particles K  with random orienta-

ctions in R3 predicted from scaling relation and the associated threshold values η∗  for regular polyhedra
(obtained from our numerical simulations) and spheroids.

K η∗
c ηc

Sphere 0.3418

Tetrahedron 0.1701 0.1774

Icosahedron 0.3030 0.3079

Decahedron 0.2949 0.2998

Octahedron 0.2514 0.2578

Cube 0.2443 0.2485

Oblate spheroid a =  c = 100b 0.01255 0.01154

Oblate spheroid a =  c = 10b 0.1118 0.104

Oblate spheroid a =  c = 2b 0.3050 0.3022

Prolate spheroid a =  c = b/2 0.3035 0.3022

Prolate spheroid a =  c = b/10 0.09105 0.104

Prolate spheroid a =  c = b/100 0.006973 0.01154

Parallelpiped a2 =  a3 = 2a1 0.2278

Cylinder h = 2a 0.4669

Spheroclyinder h = 2a 0.2972



Scaling Relation: Plates in R3

Table 6: Percolation threshold ηc of certain overlapping convex plates K with random orientations  
in R3 predicted from scaling relation.

K

Circular disk

η∗
c

0.9614

ηc

Square plate 0.8647 0.8520

Triangular plate 0.7295 0.7475

Elliptical plate b  = 3a 0.735 0.7469

Rectangular plate a2  = 2a1 1.0987
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Scaling Relation: Hyperparticle in Dimensions Four Through Eleve

Table 7: Percolation threshold ηc  of certain d-dimensional randomly overlapping  hyperparticles
predicted from the scaling relqtion for 4 ≤ d ≤ 11, including hypercubes (HC), hyperrectangular paral-
lelpiped (HRP) of aspect ratio 2 (i.e., a1 = 2a and ai = a for i = 2, . . . , d), hyperspherocylinder (HSC)
of aspect ratio 2 (i.e., h = 2a), hyperoctahedra (HO) and hypertetrahedra (HT).

Dimension HC HRP HSC HO

d = 4 −2
8.097 × 10

−2
7.452 × 10

−1
1.109 × 10

−2
6.009 × 10 3.47

d = 5 −22.990 × 10 −22.775 × 10 −24.599 × 10 −21.724 × 10 8.80
d = 6 −21.167 × 10 −21.092 × 10 −21.975 × 10 −35.560 × 10 2.58
d = 7 −34.846 × 10 −34.568 × 10 −38.899 × 10 −31.986 × 10 8.51
d = 8 −32.116 × 10 −32.006 × 10 −34.167 × 10 −47.659 × 10 3.07
d = 9 9.584 × 10−4 9.133 × 10−4 2.007 × 10−3 3.129 × 10−4 1.18

− 4 − 4 − 4 − 4
d = 10 4.404 × 10 4.214 × 10 9.746 × 10 1.314 × 10 4.69

− 4 − 4 − 4 − 5
d = 11 2.044 × 10 1.963 × 10 4.754 × 10 5.632 × 10 1.91
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Scaling Relation: Hyperparticles in Dimensions 4 Through 11
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Scaling Relation: Hyperplates for Dimensions 4 Through 11
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d

Figure 4: Left panel: Dimensionless exclusion volume vex/veff versus dimension d for spherical
and cubical hyperplates. Right panel: Lower bounds on the percolation threshold ηc versus dimension d
for spherical and cubical hyperplates.



Conclusions
A systematic and predictive theory for continuum percolation models of  
hyperspheres and nonspherical hyperparticles across all Eucliean space  
dimensions has been obtained.

Analysis was aided by a remarkable duality between the equilibrium
hard-hypersphere (hypercube) fluid system and the continuum percolation  
model of overlapping hyperspheres (hypercubes).

Low-dimensional results encode high-dimensional information.

Analytical estimates have been used to assess previous simulation results for
ηc  up to twenty dimensions.

Extensions to Lattice Percolation in High Dimensions
Showed that analogous lower-order Padé approximants lead also to bounds  
on the percolation threshold for lattice-percolation models (e.g., site and bond  
percolation) in arbitrary dimension.

Torquato and Jiao, Phys. Rev. E, 2013
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States (Phases) of Matter

We now know there are a multitude of distinguishable states of matter, e.g.,
quasicrystals and liquid crystals, which break the continuous translational
and rotational symmetries of a liquid differently from a solid crystal.
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HYPERUNIFORMITY
A hyperuniform many-particle system is one in which normalized density  
fluctuations are completely suppressed at very large lengths scales.
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HYPERUNIFORMITY
A hyperuniform many-particle system is one in which normalized density  
fluctuations are completely suppressed at very large lengths scales.

Disordered hyperuniform many-particle systems can be regarded to be new  
ideal states of disordered matter in that they

(i)behave more like crystals or quasicrystals in the manner in which they  
suppress large-scale density fluctuations, and yet are also like liquids and  
glasses since they are statistically isotropic structures with no Bragg peaks;

(ii) can exist as both as equilibrium and nonequilibrium phases;

(iii) come in quantum-mechanical and classical varieties;

(iv) and, appear to be endowed with unique bulk physical properties.  

Understanding such states of matter require new theoretical tools.
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HYPERUNIFORMITY
A hyperuniform many-particle system is one in which normalized density  
fluctuations are completely suppressed at very large lengths scales.

Disordered hyperuniform many-particle systems can be regarded to be new  
ideal states of disordered matter in that they

(i)behave more like crystals or quasicrystals in the manner in which they  
suppress large-scale density fluctuations, and yet are also like liquids and  
glasses since they are statistically isotropic structures with no Bragg peaks;

(ii) can exist as both as equilibrium and nonequilibrium phases;

(iii) come in quantum-mechanical and classical varieties;

(iv) and, appear to be endowed with unique bulk physical properties.  

Understanding such states of matter require new theoretical tools.

All perfect crystals (periodic systems) and quasicrystals are hyperuniform.

Thus, hyperuniformity provides a unified means of categorizing and  
characterizing crystals, quasicrystals and such special disordered systems.
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Local Density Fluctuations for General Point Patterns
Torquato and Stillinger, PRE (2003)

Points can represent molecules of a material, stars in a galaxy, or trees in a  
forest. Let Ω represent a spherical window of radius R in d-dimensional  
Euclidean space Rd.

ΩR Ω

. – p.4/3
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Average number of points in window of volume v1(R): (N (R)) = ρv1(R) ∼ Rd

Local number variance: σ2(R) ≡ (N 2(R)) − (N (R))2



Local Density Fluctuations for General Point Patterns
Torquato and Stillinger, PRE (2003)

Points can represent molecules of a material, stars in a galaxy, or trees in a  
forest. Let Ω represent a spherical window of radius R in d-dimensional  
Euclidean space Rd.

ΩR Ω
R

Average number of points in window of volume v1(R): (N (R)) = ρv1(R) ∼ Rd

Local number variance: σ2(R) ≡ (N 2(R)) − (N (R))2

For a Poisson point pattern and many disordered point patterns, σ2(R) ∼ Rd.

We call point patterns whose variance grows more slowly than Rd (window  
volume) hyperuniform . This implies that structure factor S(k) → 0 for k → 0.

All perfect crystals and many perfect quasicrystals are hyperuniform such that
σ2(R) ∼ Rd− 1 : number variance grows like window surface area.

. – p.4/3



SCATTERING AND DENSITY FLUCTUATIONS
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Pair Statistics in Direct and Fourier Spaces
For particle systems in Rd at number density ρ , g2(r) is a nonnegative radial function that is
proportional to the probability density of pair distances r.
The nonnegative structure factor S (k ) ≡ 1 + ρh˜(k) is obtained from the Fourier transform of
h(r) = g2(r) − 1, which we denote by h˜(k).

Poisson Distribution (Ideal Gas)
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Hidden Order on Large Length Scales

Which is the hyperuniform pattern?
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Scaled Number Variance for 3D Systems at Unit Density
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Remarks About Equilibrium Systems

For single-component systems in equilibrium at average number density ρ,

ρkBT κT =
(N 2 ) ∗ − (N )2

∗
(N ) ∗

=  S(k = 0) = 1 + ρ
f

h(r )dr
Rd

where () ∗  denotes an average in the grand canonical ensemble.

Some observations:

Any ground state (T =  0) in which the isothermal compressibility κT is  bounded 
and positive must be hyperuniform. This includes crystal ground  
states as well as exotic disordered ground states, described later.

However, in order to have a hyperuniform system at positive T , the  isothermal 

compressibility must be zero; i.e., the system must be  incompressible.

Note that generally ρkT κT /= S(k = 0).

X =
S(k = 0)
ρkBT κT

. – p. 9/3
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ENSEMBLE-AVERAGE FORMULATION
For a translationally invariant point process at number density ρ in Rd:

σ 2 (R ) = (N (R))
h

1 + ρ
Z

h(r)α(r ; R ) d r
i

Rd

α(r ; R)- scaled intersection volume of 2 windows of radius R separated by r

R
r
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ENSEMBLE-AVERAGE FORMULATION
For a translationally invariant point process at number density ρ in Rd:

σ 2 (R ) = (N (R))
h

1 + ρ
Z

h(r)α(r ; R ) d r
i

Rd

α(r ; R)- scaled intersection volume of 2 windows of radius R separated by r

R
r

10 0.2 0.4 0.6 0.8
r/(2R)

0
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0.4

0.6
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1

α(
r;R

)

Spherical window of radius R

d=1

d=5

For large R ,  we canshow
d

D D
σ2 (R ) = 2dφ

h
A

„ R «
+ B

„ R « d − 1

D

„ R «
+ o

d − 1 i
,

where A  and B are the “volume” and “surface-area” coefficients:

A = S (k = 0) = 1 + ρ
Z

h(r )dr ,
Rd

B = − c(d)
Z

h(r )rdr ,
Rd

D:  microscopic length scale, φ: dimensionless density

Hyperuniform: A = 0, B > 0
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INVERTED CRITICAL PHENOMENA: Ornstein-Zernike
Formalismh(r)  can be divided into direct correlations, via function c(r), and indirect correlations:

c˜(k) =
h̃(k )

1 + ρh˜(k)
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INVERTED CRITICAL PHENOMENA: Ornstein-Zernike
Formalismh(r)  can be divided into direct correlations, via function c(r), and indirect correlations:

c˜(k) =
h̃(k )

1 + ρh˜(k)

For any hyperuniform system, h˜(k = 0) = −1 /ρ , and thus c˜(k = 0) = − ∞ . Therefore, at the  
“critical” reduced density φc , h(r) is short-ranged and c(r) is long-ranged.

This is the inverse of the behavior at liquid-gas (or magnetic) critical points, where h(r)  is  
long-ranged (compressibility or susceptibility diverges) and c(r) isshort-ranged.
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INVERTED CRITICAL PHENOMENA: Ornstein-Zernike
Formalismh(r)  can be divided into direct correlations, via function c(r), and indirect correlations:

c˜(k) =
h̃(k )

1 + ρh˜(k)

For any hyperuniform system, h˜(k = 0) = −1 /ρ , and thus c˜(k = 0) = − ∞ . Therefore, at the  
“critical” reduced density φc , h(r) is short-ranged and c(r) is long-ranged.

This is the inverse of the behavior at liquid-gas (or magnetic) critical points, where h(r)  is  
long-ranged (compressibility or susceptibility diverges) and c(r) isshort-ranged.

For sufficiently large d at a disordered hyperuniform state, whether achieved via a nonequilibrium  
or an equilibrium route,

1 1
k 2− η(r → ∞ ) , c˜(k) ∼ − (k → 0),c(r ) ∼ −

h(r ) ∼ −

rd − 2+ η

1
rd + 2− η (r → ∞ ) , S (k)  ∼ k 2 − η (k → 0),

where η is a new critical exponent.

One can think of a hyperuniform system as one resulting from an effective pair potential v(r) at  
large r that is a generalized Coulombic interaction between like charges. Why? Because

kB T
v(r) 1

rd − 2+ η∼ −c(r) ∼ (r → ∞ )

However, long-range interactions are not required to drive a nonequilibrium system to a  
disordered hyperuniform state.
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SINGLE-CONFIGURATION FORMULATION & GROUND
STATESWe showed

d d

D D N

N

i /= j

σ2 (R ) = 2dφ
„ R « h

1 − 2dφ
„ R «

+  1  X α(r i j ; R )
i

where α(r;  R ) can be viewed as a repulsive pair potential:
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SINGLE-CONFIGURATION FORMULATION & GROUND
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σ2 (R ) = 2dφ
„ R « h

1 − 2dφ
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Finding global minimum of σ2 (R )  equivalent to finding groundstate.
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SINGLE-CONFIGURATION FORMULATION & GROUND
STATESWe showed
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i /= j

σ2 (R ) = 2dφ
„ R « h

1 − 2dφ
„ R «

+  1  X α(r i j ; R )
i
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Finding global minimum of σ2 (R )  equivalent to finding groundstate.  

For large R ,  in the special case of hyperuniform systems,
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Hyperuniformity and Number Theory

Averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L → ∞ L
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Hyperuniformity and Number Theory

Averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L → ∞ L

1 f L

0
Λ(R)dR

q /= 0
q

σ2(R) =
, ( 2πR\

We showed that for a lattice
d

d/ 2[J (qR)]2, Λ = 2dπd−1 ,

q /= 0

1
|q|d+ 1 .

Epstein zeta function for a lattice is defined by

Z(s) =
,

q /= 0

1
|q|2s , Re s > d/2.

Summand can be viewed as an inverse power-law potential. For  
lattices, minimizer of Z(d + 1) is the lattice dual to the minimizer of Λ.

Surface-area coefficient Λ provides useful way to rank order crystals,  
quasicrystals and special correlated disordered point patterns.
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Quantifying Suppression of Density Fluctuations at Large Scales: 1D

The surface-area coefficient Λ for some crystal, quasicrystal  
and disordered one-dimensional hyperuniform point patterns.

Pattern Λ
Integer Lattice 1 /6 ≈ 0.166667

Step+Delta-Function g2 3/16 =0.1875

Fibonacci Chain∗ 0.2011

Step-Function g2 1 /4 = 0.25
Randomized Lattice 1 /3 ≈ 0.333333

∗Zachary & Torquato (2009)
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Quantifying Suppression of Density Fluctuations at Large Scales: 2D

The surface-area coefficient Λ for some crystal, quasicrystal  
and disordered two-dimensional hyperuniform point patterns.

2D Pattern Λ/ φ1/ 2

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagomé Lattice 0.586990

Penrose Tiling∗ 0.597798

Step+Delta-Function g2 0.600211

Step-Function g2 0.848826

∗Zachary & Torquato (2009)
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Quantifying Suppression of Density Fluctuations at Large Scales: 3D
Contrary to conjecture that lattices associated with the densest
sphere packings have smallest variance regardless of d, we have  
shown that for d =  3, BCC has a smaller variance thanFCC.

Pattern Λ/ φ2/ 3

BCC Lattice 1.24476

FCC Lattice 1.24552

HCP Lattice 1.24569

SC Lattice 1.28920

Diamond Lattice 1.41892

Wurtzite Lattice 1.42184

Damped-Oscillating g2 1.44837

Step+Delta-Function g2 1.52686

Step-Function g2 2.25

Carried out analogous calculations in high d (Zachary &  
Torquato, 2009), of importance in communications. Disordered  

point patterns may win in high d (Torquato & Stillinger, 2006).
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1D Translationally Invariant Hyperuniform Systems

An interesting 1D hyperuniform point pattern is the distribution of the  
nontrivial zeros of the Riemann zeta function (eigenvalues of random  
Hermitian matrices and bus arrivals in Cuernavaca): Dyson, 1970;  
Montgomery, 1973; Krbà lek & S̆     eba, 2000; g2(r) = 1 − sin2(πr)/(πr)2
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1D point process is always negatively correlated, i.e., g2(r) ≤ 1 and pairs of  
points tend to repel one another, i.e., g2(r) → 0 as r  tends to zero.
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1D point process is always negatively correlated, i.e., g2(r) ≤ 1 and pairs of  
points tend to repel one another, i.e., g2(r) → 0 as r  tends to zero.

Dyson mapped this problem to a 1D log Coulomb gas at positive temperature:
kBT =  1/2. The total potential energy of the system is givenby

1
2 i = 1

. – p.17/3
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An interesting 1D hyperuniform point pattern is the distribution of the  
nontrivial zeros of the Riemann zeta function (eigenvalues of random  
Hermitian matrices and bus arrivals in Cuernavaca): Dyson, 1970;  
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1D point process is always negatively correlated, i.e., g2(r) ≤ 1 and pairs of  
points tend to repel one another, i.e., g2(r) → 0 as r  tends to zero.

Dyson mapped this problem to a 1D log Coulomb gas at positive temperature:
kBT =  1/2. The total potential energy of the system is givenby

1
2 i = 1

N N

i ≤ j

ΦN ( r N ) =
X

|r i |2 −
X

ln(|r i − r j |) .

Constructing and/or identifying homogeneous, isotropic hyperuniform  
patterns for d ≥  2 is more challenging. We now know of many moreexamples.
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More Recent Examples of Disordered Hyperuniform Systems
Fermionic point processes: S(k) ∼  k as k →  0 (ground states and/or  
positive temperature equilibrium states): Torquato et al. J. Stat. Mech. (2008)

Maximally random jammed (MRJ) particle packings: S(k) ∼ k as k → 0
(nonequilibrium states): Donev et al. PRL (2005)

Ultracold atoms (nonequilibrium states): Lesanovsky et al. PRE (2014)

Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack  
et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL (2015)

Disordered classical ground states: Uche et al. PRE (2004)
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Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack  
et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL (2015)

Disordered classical ground states: Uche et al. PRE (2004)

Natural Disordered Hyperuniform Systems

Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)  

Immune-system receptors (nonequilibrium states): Mayer et al. PNAS (2015)  

Neuronal tracts (nonequilibrium states): Burcaw et. al. NeuroImage (2015)

. – p.18/3



More Recent Examples of Disordered Hyperuniform Systems
Fermionic point processes: S(k) ∼  k as k →  0 (ground states and/or  
positive temperature equilibrium states): Torquato et al. J. Stat. Mech. (2008)

Maximally random jammed (MRJ) particle packings: S(k) ∼ k as k → 0
(nonequilibrium states): Donev et al. PRL (2005)

Ultracold atoms (nonequilibrium states): Lesanovsky et al. PRE (2014)

Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack  
et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL (2015)

Disordered classical ground states: Uche et al. PRE (2004)

Natural Disordered Hyperuniform Systems

Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)  

Immune-system receptors (nonequilibrium states): Mayer et al. PNAS (2015)  

Neuronal tracts (nonequilibrium states): Burcaw et. al. NeuroImage (2015)

Nearly Hyperuniform Disordered Systems  
Amorphous Silicon (nonequilibrium states): Henja et al. PRB (2013)
Structural Glasses (nonequilibrium states): Marcotte et al. (2013) . – p.18/3



Hyperuniformity and Spin-Polarized Free Fermions
One can map random Hermitian matrices (GUE), fermionic gases, and zeros of  
the Riemann zeta function to a unique hyperuniform point process on R.
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Hyperuniformity and Spin-Polarized Free Fermions
One can map random Hermitian matrices (GUE), fermionic gases, and zeros of  
the Riemann zeta function to a unique hyperuniform point process on R.

We provide exact generalizations of such a point process in d-dimensional  
Euclidean space Rd and the corresponding n-particle correlation functions,  
which correspond to those of spin-polarized free fermionic systems in Rd.
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k + O(k3) (k → 0) ( K  :  Fermi sphere radius)

Torquato, Zachary & Scardicchio, J. Stat. Mech., 2008  
Scardicchio, Zachary & Torquato, PRE, 2009



Hyperuniformity and Jammed Packings
Conjecture: All strictly jammed saturated sphere packings are hyperuniform  
(Torquato & Stillinger, 2003).
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Hyperuniformity and Jammed Packings
Conjecture: All strictly jammed saturated sphere packings are hyperuniform  
(Torquato & Stillinger, 2003).

A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it  
is maximally disordered but perfectly rigid (infinite elastic moduli).
Such packings of identical spheres have been shown to be hyperuniform with  
quasi-long-range (QLR) pair correlations in which h(r) decays as −1 / r 4

(Donev, Stillinger & Torquato, PRL, 2005).
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This is to be contrasted with the hard-sphere fluid with correlations that decay  
exponentially fast.
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A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it  
is maximally disordered but perfectly rigid (infinite elastic moduli).
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This is to be contrasted with the hard-sphere fluid with correlations that decay  
exponentially fast.
Apparently, hyperuniform QLR correlations with decay −1 / r d + 1  are a  
universal feature of general MRJ packings in Rd.

Zachary, Jiao and Torquato, PRL (2011): ellipsoids, superballs, sphere mixtures  
Berthier et al., PRL (2011); Kurita and Weeks, PRE (2011) : sphere mixtures  Jiao 
and Torquato, PRE (2011): polyhedra

. – p.20/3



In the Eye of a Chicken: Photoreceptors
Optimal spatial sampling of light requires that photoreceptors be arranged in
the triangular lattice (e.g., insects and some fish).

Birds are highly visual animals, yet their cone photoreceptor patterns are  
irregular.
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In the Eye of a Chicken: Photoreceptors
Optimal spatial sampling of light requires that photoreceptors be arranged in
the triangular lattice (e.g., insects and some fish).

Birds are highly visual animals, yet their cone photoreceptor patterns are  
irregular.

5 Cone Types

Jiao, Corbo & Torquato, PRE (2014).
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Avian Cone Photoreceptors
Disordered mosaics of both total population and individual cone types are
effectively hyperuniform, which has been never observed in any system before  
(biological or not). We term this multi-hyperuniformity.

Jiao, Corbo & Torquato, PRE (2014)
. – p. 22/3



Slow and Rapid Cooling of a Liquid  
Classical ground states are those classical particle  
configurations with minimal potential energy per particle.
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Typically, ground states are periodic with high crystallographic  
symmetries.

Can classical ground states ever be disordered?
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Creation of Disordered Hyperuniform Ground States
Uche, Stillinger & Torquato, Phys. Rev. E 2004  
Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

•Consider a system of N  particles with configuration r N  in a fundamental region Ω under periodic  
boundary conditions) with a pair potentials v(r)  that is bounded with Fourier transform v˜(k).



Creation of Disordered Hyperuniform Ground States
Uche, Stillinger & Torquato, Phys. Rev. E 2004  
Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

•Consider a system of N  particles with configuration r N  in a fundamental region Ω under periodic  
boundary conditions) with a pair potentials v(r)  that is bounded with Fourier transform v˜(k).
The total energy is

ΦN ( r N ) =
X

v ( r i j )
i < j

=
N

2|Ω|
X

v˜(k)S(k) +  constant
k

• For v˜(k) positive ∀ 0 ≤ |k| ≤ K and zero otherwise, finding configurations in which S (k) is
constrained to be zero where v˜(k) has support is equivalent to globally minimizing Φ ( r N ).
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These hyperuniform ground states are called “stealthy” and generally highly degenerate.
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Collective-Coordinate Simulations

•Consider a system of N  particles with configuration r N  in a fundamental region Ω under periodic  
boundary conditions) with a pair potentials v(r)  that is bounded with Fourier transform v˜(k).
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These hyperuniform ground states are called “stealthy” and generally highly degenerate.

•Stealthy patterns can be tuned by varying the parameter χ :  ratio of number of constrained degrees of  
freedom to the total number of degrees of freedom, d(N − 1).
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Creation of Disordered Stealthy Ground States

Previously, started with an initial random distribution of N points and then
found the energy minimizing configurations (with extremely high precision)
using optimization techniques.
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Creation of Disordered Stealthy Ground States

Previously, started with an initial random distribution of N points and then
found the energy minimizing configurations (with extremely high precision)
using optimization techniques.

For 0 ≤  χ < 0.5, the stealthy ground states are degenerate, disordered and  
isotropic.

(a)   χ= 0.04167 (b)  χ =0.41071

Success rate to achieve disordered ground states is 100%.
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Creation of Disordered Stealthy Ground States

Previously, started with an initial random distribution of N points and then
found the energy minimizing configurations (with extremely high precision)
using optimization techniques.

For 0 ≤  χ < 0.5, the stealthy ground states are degenerate, disordered and  
isotropic.

(a)   χ= 0.04167 (b)  χ =0.41071

Success rate to achieve disordered ground states is 100%.

For χ > 1/2, the system undergoes a transition to a crystal phase and the  
energy landscape becomes considerably more complex.
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Stealthy Disordered Ground States and Novel Materials
Until recently, it was believed that Bragg scattering was required to achieve  
metamaterials with complete photonic band gaps.
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Stealthy Disordered Ground States and Novel Materials
Until recently, it was believed that Bragg scattering was required to achieve  
metamaterials with complete photonic band gaps.

Have used disordered, isotropic “stealthy” ground-state configurations to  
design photonic materials with large complete (both polarizations and all  
directions) band gaps.

Florescu, Torquato and Steinhardt, PNAS (2009)
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Stealthy Disordered Ground States and Novel Materials
Until recently, it was believed that Bragg scattering was required to achieve  
metamaterials with complete photonic band gaps.

Have used disordered, isotropic “stealthy” ground-state configurations to  
design photonic materials with large complete (both polarizations and all  
directions) band gaps.

Florescu, Torquato and Steinhardt, PNAS (2009)

These network material designs have been fabricated for microwave regime.
Man et. al., PNAS (2013)

Because band gaps are isotropic, such photonic materials offer advantages  
over photonic crystals (e.g., free-form waveguides).
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Stealthy Disordered Ground States and Novel Materials
Until recently, it was believed that Bragg scattering was required to achieve  
metamaterials with complete photonic band gaps.

Have used disordered, isotropic “stealthy” ground-state configurations to  
design photonic materials with large complete (both polarizations and all  
directions) band gaps.

Florescu, Torquato and Steinhardt, PNAS (2009)

These network material designs have been fabricated for microwave regime.
Man et. al., PNAS (2013)

Because band gaps are isotropic, such photonic materials offer advantages  
over photonic crystals (e.g., free-form waveguides).

High-density transparent stealthy disordered materials: Leseur, Pierrat &  
Carminati (2016).
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Ensemble Theory of Disordered Ground States
Torquato, Zhang & Stillinger, Phys. Rev. X, 2015

Nontrivial: Dimensionality of the configuration space depends on the number density ρ (or χ ) and
there is a multitude of ways of sampling the ground-state manifold, each with its own probability  
measure. Which ensemble? How are entropically favored states determined?

Derived general exact relations for thermodynamic properties that apply to any ground-state  
ensemble as a function of ρ in any d and showed how disordered degenerate ground states arise.
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Ensemble Theory of Disordered Ground States
Torquato, Zhang & Stillinger, Phys. Rev. X, 2015

Nontrivial: Dimensionality of the configuration space depends on the number density ρ (or χ ) and
there is a multitude of ways of sampling the ground-state manifold, each with its own probability  
measure. Which ensemble? How are entropically favored states determined?

Derived general exact relations for thermodynamic properties that apply to any ground-state  
ensemble as a function of ρ in any d and showed how disordered degenerate ground states arise.

From previous considerations, we that an important contribution to S (k ) is a simple hard-core
step function Θ(k − K ) , which can be viewed as a disordered hard-sphere system in Fourier
space in the limit that χ ∼ 1 /ρ tends to zero, i.e., as the number density ρ tends to infinity.
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That the structure factor must have the behavior
S (k )  → Θ(k − K ) , χ → 0

is perfectly reasonable; it is a perturbation about the ideal-gas limit in which S (k )  = 1 for all k.
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That the structure factor must have the behavior
S (k )  → Θ(k − K ) , χ → 0

is perfectly reasonable; it is a perturbation about the ideal-gas limit in which S (k )  = 1 for all k.

We make the ansatz that for sufficiently small χ ,  S (k )  in the canonical ensemble for a stealthy  
potential can be mapped to g2(r) for an effective disordered hard-sphere system for sufficiently  
small density.

. – p.27/3



Pseudo-Hard Spheres in Fourier Space
Let us define H̃ (k) ≡ ρh˜(k) = h H S (r = k)

There is an Ornstein-Zernike integral eq. that defines FT of appropriate direct correlation function, C˜(k):

H̃ (k) = C˜(k) + η H̃ (k) ⊗ C˜(k),

where η is an effective packing fraction. Therefore,

H(r ) =
C (r)

1 − (2π)d η C(r)
.

This mapping enables us to exploit the well-developed accurate theories of standard Gibbsian  
disordered hard spheres in direct space.
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General Scaling Behaviors

Hyperuniform particle distributions possess structure factors  
with a small-wavenumber scaling

S(k) ∼ kα, α > 0,
including the special case α = + ∞ for periodic crystals.  

Hence, number variance σ2(R) increases for large R
asymptotically as (Zachary and Torquato, 2011)

σ2(R) ∼
��

Rd− α,
��Rd− 1,

�
Rd−1 ln R, α = 1

α < 1
α > 1

(R → + ∞ ) .

Until recently, all known hyperuniform configurations pertained  
to α ≥ 1.
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Targeted Spectra S  ∼ kα
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Configurations are ground states of an interacting  
many-particle system with up to four-body interactions.
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Targeted Spectra S ∼  kα  with α ≥ 1
Uche, Stillinger & Torquato (2006)

Figure 1: One of them is for S (k ) ∼ k6 and other for S (k ) ∼ k.
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Targeted Spectra S ∼  kα  with α < 1
Zachary & Torquato (2011)

(a) (b)

Figure 2: Both configurations exhibit strong local clustering of points and possess a highly irreg-
ular local structure; however, only one of them is hyperuniform (with S  ∼ k1 / 2 ) .
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Amorphous Silicon is Nearly Hyperuniform
Highly sensitive transmission X-ray scattering measurements performed at  
Argonne on amorphous-silicon (a-Si) samples reveals that they are nearly  

hyperuniform with S(0) = 0.0075.

Long, Roorda, Hejna, Torquato, and Steinhardt (2013)

This is significantly below the putative lower bound recently suggested by de  
Graff and Thorpe (2009) but consistent with the recently proposed nearly  
hyperuniform network picture of a-Si (Hejna, Steinhardt and Torquato, 2013).
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Increasing the degree of hyperuniformity of a-Si appears to be correlated with  
a larger electronic band gap (Hejna, Steinhardt and Torquato, 2013).
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Structural Glasses and Growing Length Scales
Important question in glass physics: Do growing relaxation times under  
supercooling have accompanying growing structural length scales? Lubchenko  

& Wolynes (2006); Berthier et al. (2007); Karmakar, Dasgupta & Sastry (2009); Chandler &  

Garrahan (2010); Hocky, Markland & Reichman (2012)
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Important question in glass physics: Do growing relaxation times under  
supercooling have accompanying growing structural length scales? Lubchenko  

& Wolynes (2006); Berthier et al. (2007); Karmakar, Dasgupta & Sastry (2009); Chandler &  

Garrahan (2010); Hocky, Markland & Reichman (2012)

We studied glass-forming liquid models that support an alternative view:  
existence of growing static length scales (due to increase of the degree of  
hyperuniformity) as the temperature T of the supercooled liquid is decreased  
to and below Tg  that is intrinsically nonequilibrium in nature.
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hyperuniformity) as the temperature T of the supercooled liquid is decreased  
to and below Tg  that is intrinsically nonequilibrium in nature.
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The degree of deviation from thermal equilibrium is determined from a
nonequilibrium index

X =
S(k = 0)
ρkBT κT
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− 1,
which increases upon supercooling.

Marcotte, Stillinger & Torquato (2013)



Hyperuniformity of Disordered Two-Phase Materials

Hyperuniformity concept was generalized to the case of heterogeneous  
materials: phase volume fraction fluctuates within a spherical window of  

radius R (Zachary and Torquato,2009).
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V
For typical disordered media, volume-fraction variance σ2 (R) for large R
goes to zero like R− d .
For hyperuniform disordered two-phase media, σ2 (R) goes to zero faster
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|k |→ 0
lim χ˜V (k) = 0.



Hyperuniformity of Disordered Two-Phase Materials
Hyperuniformity concept was generalized to the case of heterogeneous  
materials: phase volume fraction fluctuates within a spherical window of  

radius R (Zachary and Torquato,2009).

V
For typical disordered media, volume-fraction variance σ2 (R) for large R
goes to zero like R− d .
For hyperuniform disordered two-phase media, σ2 (R) goes to zero faster

V

than R− d ,  equivalent to following condition on spectral density χ˜V (k):

|k |→ 0
lim χ˜V (k) = 0.

Interfacial-area fluctuations play an important role in static and surface-area
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S
evolving structures. Here we define σ2 (R) and hyperuniformity condition is
(Torquato, PRE, 2016)

|k |→ 0
lim χ˜S (k) = 0.



Designing Disordered Hyperuniform Heterogeneous Materials
Disordered hyperuniform two-phase systems can be designed with targeted  
spectral functions (Torquato, J. Phys.: Cond. Mat., 2016).

For example, consider the following hyperuniform functional forms in 2D and
3D:
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Designing Disordered Hyperuniform Heterogeneous Materials
Disordered hyperuniform two-phase systems can be designed with targeted  
spectral functions (Torquato, J. Phys.: Cond. Mat., 2016).

For example, consider the following hyperuniform functional forms in 2D and
3D:
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The following is a 2D realization:
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Other Generalization of Hyperuniformity
Consider

Random scalar fields: Concentration and temperature fields in random
media and turbulent flows, laser speckle patterns, and temperature  
fluctuations associated with CMB.
Random vector fields: Random media (e.g., heat, current, electric,
magnetic and velocity vector fields) and turbulence.
Structurally anisotropic materials: Many-particle systems and random
media that are statistically anisotropic.
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Is there a many-particle system with following anisotropic scattering pattern?
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CONCLUSIONS
Disordered hyperuniform materials are new ideal states of disordered matter.
Hyperuniformity provides a unified means of categorizing and characterizing  
crystals, quasicrystals and special correlated disordered systems.
The degree of hyperuniformity provides an order metric for the extent to which
large-scale density fluctuations are suppressed in such systems.  
Disordered hyperuniform systems appear to be endowed with unusual  
physical properties that we are only beginning to discover.
Directional hyperuniform materials represents an exciting new extension.  
Hyperuniformity has connections to physics and materials science (e.g.,
ground states, quantum systems, random matrices, novel materials, etc.),  
mathematics (e.g., geometry and number theory), and biology.
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